A tricycle for amputed children

Americas by design

Summary

- The choice of requirements
- Product function
 - Function tree
 - System functionnalty
- Design specification
- Patent search and benchmarking
- Solution chosen

The choice of requirements « Wishes »

4

Product Function (Function tree)

Function tree (next)

Product Function System functionality

Design specification

Maximum Transportable Weight	30 Kg
Maximum Speed	20 km/h
Child between 60 cm and 130 cm tall	
Maximum tricycle weight	8,5 Kg
Maximum size when folded (Volume)	60 cm x 50 cm x 100 cm
Braking System Power	1 KW
Maximum Deceleration	3 m/s^2 (Stop time = 0,63s Braking Space = 2,93 m)
Gravity center as low as possible	
Corrosion resistant Material	
Recyclable Material	
Standard Wheels	
Maximum Steering Radius	2 m

Patent search and benchmarking

- MOVEMENT PRINCIPLES
- BREAKING SYSTEM SOLUTIONS
- DRIVING SYSTEM

• SADDLE

Solution chosen

• • •

... thanks to the Marks

- Choice of a pounderation for each requirements
- Each members give a mark
- Choice of the first two solutions

Requirement	R1	R2	R3	R4	R5	R6	R7	R8	Sum
Weight	5	5	4	2	3	2	1	3	
S1	4.00	4.67	4.33	3.67	2.67	3.67	4.00	3.67	3.4933333333333333
S2	4.50	4.25	4.25	3.25	3.00	3.25	3.25	2.75	3.44
S3	3.75	4.42	4.58	3.42	3.17	3.67	4.25	3.42	3.4833333333333333
S4	3.88	2.81	3.81	2.56	2.25	3.06	3.56	1.94	2.81
S5	3.69	4.35	4.40	3.35	2.54	3.92	3.81	3.10	3.350833333333333
S6	3.97	3.70	4.20	2.89	2.81	3.27	3.39	2.48	3.1725

AHP Method

- Determine the **relative** weights of the decision criteria
- Determine the **relative** rankings (priorities) of alternatives
- We didn't take the cost in consideration

	safe	ergonomic	foldable	aesthetic	rideable
safe	1	2	4	6	0,5
ergonomic	0,5	1	3	5	0,33333
foldable	0,25	0,33333	1	2	0,2
aesthetically pleasing	0,16667	0,2	0,5	1	0,16667
rideable	2	0,2	5	6	1

Before Costs		
S1	0,5739	
S2	0,4261	

 β Matrix A is defined by selecting the relative weights of the decision criteria (SAFE-ERGONOMIC-FOLDABLE-AESTETICALLY PLEASING-RIDERLE BY AMFUTED CHILD) 64

A−[1 2 4 6 0.5;0.5 1 3 5 1/3;0.25 1/3 1 2 0.2;1/6 0.2 0.5 1 1/6;2 0.2 5 6 1]; B−A²2; vatt-[aum(8(1,:));sum(8(2,:));sum(8(3,:));sum(8(4,:));sum(8(5,:))];

 δ The computed eigenvector gives us the relative ranking of our criteria well, some well, sum (well,

 δt Now we presents in the same way by giving weights to our two possible solutions according to each criteria

88,f8,7[1 3,1/3 1], ergenomics[1 1,1 1], foldabl=[1 1/3,3 1], samtetioblly=[1 1/3,7 1], sidebla=[1 1,1 1],

% SAFE
asfe_l-asfe^2;
w@Rtg=[sum(safe_1(1,:));sum(safe_1(2,:))];
w@Rtg=r@Rtg=r@Rtg(w@Rtg)

% ERGONCHIC ergonomic_l=ergonomic^2; %%Tide(Eam(dergonomic_l(1,:));sum(ergonomic_l(2,:))]; vett_norme=vette/sum(vette)

% FOLDABLE
foldable_l-foldable^2;
w@tt_foldable_l(l,:));sum(foldable_l(2,:));
w@tt_foldable_l(2,:));

% AESTETICALLY PLEASING asstatically_l-asstatically^2; wpttps=(sm(satatically_l(1,:));sum(asstatically_l(2,:))]; vstt_norma-vetta/sum(vetta)

&RIDEBLE BY AMPUTED CHILD rideble_l-rideble^2; v@ttpr-[aum(qideble(1,:)), aum(qideble(2,:))]; v@ttpActerv@ttp(aum(v@ttp))

 δ In matrix C there are weights of the single solutions according to our benefits only(without considerations about costs)

 $C-[\mbox{trudor}, \mbox{trudor}, \$

And the Winner is ...!!!

Solution 1

General view of design

- Maked us understand how to manage an innovative project
- Enabled us to meet students from south America and USA
- Understood the designers's different way of thinking

We now need an mechanical optimisation of the frame in order to minimize the weight